

Comorbiditiesin Psoriasis

From Psoriatic Arthritis to Obesity

Key Takeaways for *Dermatologists*

Impact of Race/Ethnicity

PSOLAR: Registry of Patients With Moderate-to-Severe PsO – North American Dataset¹

Prevalence of PsO comorbidities by self-reported race/ethnicity

	Obesity (BMI ≥30 kg/m²)	Cardiovascular disease	PsA
White (n=8338)	50.7%	39.9%	37.3%
Black (n=404)	58.9%	48.3%	34.2%
Asian (n=436)	23.2%	29.8%	30.5%
Hispanic/Latino (n=668)	57.8%	30.8%	36.8%
Other (n=261)	44.8%	39.9%	34.9%

Patients with moderate-to-severe PsO who are Black have higher rates of obesity and CVD, and are more likely to have a poorer QoL due to the impact of disease¹

• 80.0% of Black patients reported a DLQI ≥2, vs. 68.6% of White patients

Presentation of PsO in patients with skin of color

- In darker skin, recognizing inflammation is nuanced since erythema often appears violaceous, dark brown, or gray²
- Patients may be left with hyper- or hypopigmentation after psoriatic lesions have resolved²
- Prevalence of PsO varies between different races³
- Race and ethnicity may be associated with socioeconomic disparities that impact access and adherence to different types of treatments⁴

Obesity

Obesity Impacts the Body's Homeostasis

Pathological increase of adipose tissue and dysfunction induces qualitative and quantitative changes in signal production⁵

These changes induce low-grade systemic inflammation,⁵⁻⁷ insulin resistance,^{5,8} endothelial dysfunction,⁸ synthesis of pro-clotting factors,⁸ and other metabolic disorders⁵; ultimately leading to the impairment of multiple organs and their functions⁵

Patients With PsO and Comorbid Obesity Are More Likely to Have Involvement of Challenging Body Areas

Up to 38% of patients with PsO have comorbid obesity^{a-c,9,10}

Palms and Soles

3.5× higher prevalence in patients with **comorbid obesity**^{d,e,11}

Inverse PsO (intertriginous areas)

2.2× higher prevalence in patients with comorbid obesity^{c,d,12}

Nails

1.8× higher prevalence in patients with **comorbid obesity**^{c,d,13}

Treatment Considerations

- Patients with PsO and comorbid obesity^c may have a lower response to some biologics for PsO, compared to those without comorbid obesity¹⁴
- Weight loss is associated with a numerical reduction in PASI score¹⁵

1.5× to 3×f higher risk of PsA in patients with PsO and comorbid obesity^{g,16}

AAD/NPF Recommendations for Dermatologists¹⁷

- Inform patients regarding the association between metabolic syndrome components and PsO
- Advise patients to practice a healthy lifestyle (appropriate diet, regular exercise, smoking cessation, and mental wellness)
- Ensure that the patient is engaged with their PCP for appropriate screening
- Communicate with the patient's PCP to have them evaluated and appropriately treated for obesity/ comorbidities (including referral to the appropriate HCP specialist to confirm diagnosis and treatment)

a The value of 38% differs from that shown on page 2, which was based on data from the PSOLAR registry, as the NHANES data encompass a broader population. An antionally representative survey of the US civilian, non-institutionalized population conducted by the CDC NCHS. The cross-sectional survey includes an in-home interview to obtain sociodemographic characteristics and medical history, and a physical examination and laboratory measures, including BMI, taken at a mobile examination center. Patients self-reported being diagnosed with PsO. Obesity defined as BMI ≥30 kg/m². Usualistic involved a small number of patients and not all studies consistently reported the same prevalence. Obesity defined as BMI ≥25 kg/m². Based on data from a study in US women.

Cardiovascular Disease

PsO is an Independent Risk Factor for CVD¹⁸

PsO and cardiometabolic disorders may be associated with each other via systemic inflammation¹⁹

The development of atherosclerosis in PsO may result from a combination of induced immune system activation and pan-arterial inflammation, alongside comorbid cardiometabolic conditions²⁰

Pathophysiological variables²⁰

T cells, platelets, myeloid lineage cells, adipocytes, inflammasome signaling

Clinical factors²⁰

• For example, hypertension, hyperlipidemia

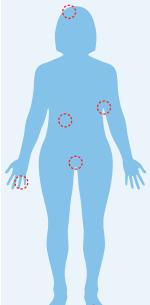
PsO and atherosclerosis share common disease pathways:18

- Reduced T-regulatory cell numbers result in decreased production of anti-inflammatory and increased activity of Th1 and Th17 cells
- Th1 cells release pro-inflammatory cytokines that activate macrophages, keratinocytes, and vascular cells, triggering additional cytokine production

Patients with PsO are up to 50% more likely to develop CVD compared to those without PsO^{20}

Severe PsO confers the highest CV risk (compared with control subjects), including up to²⁰

- 3-fold increased odds of myocardial infarction
- 60% higher odds of stroke
- 40% higher odds of CV-related mortality


Biologic therapy for PsO is associated with reduced coronary inflammation²¹

AAD/NPF Recommendations for Dermatologists¹⁷

- Dermatologists should inform patients about the association between CVD and PsO and ensure that the patient is receiving care from their primary care provider or cardiologist for screening purposes
- CV risk assessment (screening for hypertension, diabetes, and hyperlipidemia) with national guidelines is recommended for all patients with PsO
- Consider early and more frequent screening for hypertension, diabetes, and hyperlipidemia in PsO patients who are candidates for systemic or phototherapy or who have PsO involving >10% of the BSA
- · Risk score models should be adapted for patients with PsO
- CV risk management in PsO for hypertension and dyslipidemia should be carried out according to national guidelines

Psoriatic Arthritis

There are several risk factors that may contribute to the development of PsA in patients with PsO

Effect Size (95% CI)a

BMI ≥35 kg/m^{2 b,c,16}

In general population: up to RR 6.46 (4.11-10.16)

In patients with PsO: up to RR 2.98 (1.86-4.78)

Inverse PsO¹⁶

Intergluteal/perianal involvement: HR 1.95 (1.07-3.56)

Severity of PsOd,16

RR 5.39 (1.64-17.7)

Scalp PsO²²

HR 3.89 (2.18-6.94)

Nail dystrophy²²

HR 2.93 (1.68-5.12)

Physical trauma (all)¹⁶

HR 1.32 (1.13-1.54)

Other risk factors include family history of PsA, smoking, and duration of PsO; however, for the latter two, results for their impact on risk are mixed¹⁶

Treatment Considerations

In PsA, irreversible joint damage²³

- Can happen with a delay in diagnosis of just 6 months
- Can lead to worse long-term physical function

Simple Mnemonic: PsA²⁴

AAD/NPF Recommendations for Dermatologists¹⁷

- Patients with PsO should be informed about the association between PsO and PsA
- PsA should be considered in all patients with cutaneous PsO
- Patients with signs and symptoms suspicious for PsA should be fully evaluated for PsA. Initiate appropriate PsA therapy if comfortable with the diagnosis or otherwise consult with a rheumatologist for assessment and management

Note: Risk factors for the development of PsA in patients with PsO are from cohort studies unless otherwise stated.
^aAdjusted for other covariates. ^bBMI ≥35.0 kg/m² vs. normal (BMI <25.0 kg/m²). ^cTime varying exposure. ^dPASI score >20 vs. <10.

Hepatic Disease

Patients With PsO Are at an Increased Risk of Developing Hepatic Disease

MAFLD encompasses a spectrum of liver diseases ranging from steatosis, which is relatively benign, to MASH – a severe form where fatty infiltration is accompanied by inflammation and hepatocellular ballooning²⁵

The pathogenic link between PsO and MAFLD/MASH may be bi-directional 17,25-27

- Skin lymphocyte-derived cytokines may circulate through and potentially damage the liver, and/or¹⁷
- Hepatic inflammatory cytokines may circulate systemically and promote keratinocyte hyperproliferation¹⁷

Patients with PsO have a higher risk of MAFLD compared with non-PsO controls²⁷:

OR 1.67 (95% CI 1.03-2.70), p= $.04^{27}$

Patients with PsO and PsA are at an increased risk of MASH²⁸

In a population of patients with PsO or PsA (N=103)

47% had *MAFLD*, and of those

48% had MASH

- Patients with MASH are at risk of progressing to advanced liver disease^{25,26}
- MASH can result in cirrhosis in 12-25% of cases²⁶
- Hepatocellular cancer develops at a rate ~2% per year in MASH-related cirrhosis²⁹

Hepatic disease is a comorbid condition without specific recommendations in the AAD/NPF guideline¹⁷

- Dermatologists should be aware of the increased prevalence of MAFLD in patients with PsO
- Systemic medications may be deleterious to liver function^a
- Unidentified liver disease can lead to progression of liver damage; early identification allows for management and monitoring

^aSystemic therapies included methotrexate, cyclosporine, oral retinoids, TNF inhibitors, and IL-12/IL-23 inhibitors.³⁰

Abbreviations and References

Abbreviations:

AAD=American Academy of Dermatology; BMI=Body Mass Index; BSA=Body Surface Area; CDC=Centers for Disease Control and Prevention; CI=Confidence Interval; CV=Cardiovascular; CVD=Cardiovascular Disease; DLQI=Dermatology Life Quality Index; HCP=Healthcare Professional; HR=Hazard Ratio; IL=Interleukin; MAFLD=Metabolic Dysfunction-associated Fatty Liver Disease; MASH=Metabolic Dysfunction-associated Steatohepatitis; NCHS=National Center for Health Statistics; NHANES=National Health and Nutrition Examination Survey; NPF=National Psoriasis Foundation; OR=Odds Ratio; PASI=Psoriasis Area and Severity Index; PCP=Primary Care Provider; PsA=Psoriatic Arthritis; PsO=Psoriasis; PSOLAR=Psoriasis Longitudinal Assessment and Registry; QoL=Quality of Life; RR=Relative Risk; Th=T Helper; TNF=Tumor Necrosis Factor.

References:

- 1. Takeshita J, Augustin M, de Jong EMGJ, et al. Health-related QOL differs by race/ethnicity in North American patients with psoriasis: Results from PSOLAR. *J Invest Dermatol.* 2022;142(9):2528-2531.e3.
- 2. Kaufman BP, Alexis AF. Psoriasis in skin of color: Insights into the epidemiology, clinical presentation, genetics, quality-of-life impact, and treatment of psoriasis in non-white racial/ethnic groups. *Am J Clin Dermatol*. 2018;19(3):405-423.
- 3. Armstrong AW, Mehta MD, Schupp CW, Gondo GC, Bell SJ, Griffiths CEM. Psoriasis prevalence in adults in the United States. *JAMA Dermatol*. 2021;157(8):940-946.
- 4. Xie Z, St Clair P, Goldman DP, Joyce G. Racial and ethnic disparities in medication adherence among privately insured patients in the United States. *PLoS One*. 2019;14(2):e0212117.
- 5. Favaretto F, Bettini S, Busetto L, Milan G, Vettor R. Adipogenic progenitors in different organs: Pathophysiological implications. *Rev Endocr Metab Disord*. 2022;23(1):71-85.
- 6. Guo Z, Yang Y, Liao Y, Shi Y, Zhang LJ. Emerging roles of adipose tissue in the pathogenesis of psoriasis and atopic dermatitis in obesity. *JID Innov.* 2022;2(1):100064.
- 7. Porta S, Otero-Losada M, Kölliker Frers RA, Cosentino V, Kerzberg E, Capani F. Adipokines, cardiovascular risk, and therapeutic management in obesity and psoriatic arthritis. *Front Immunol.* 2021;11:590749.
- 8. Russolillo A, Iervolino S, Peluso R, et al. Obesity and psoriatic arthritis: From pathogenesis to clinical outcome and management. *Rheumatology (Oxford)*. 2013;52(1):62-67.
- 9. CDC NHANES questionnaires, datasets, and related documentation. https://wwwn.cdc.gov/nchs/nhanes/Default.aspx (2009-2020). Accessed January 30, 2024.
- 10. Data on file. Lilly USA, LLC. DOF-IX-US-0341.
- 11. Rathod A, Neema S, Radhakrishnan S, et al. Palmoplantar plaque psoriasis is associated with diabetes, hypertension, obesity, and metabolic syndrome A case-control study. *Indian Dermatol Online J.* 2022;13(5):606-610.
- 12. Herron MD, Hinckley M, Hoffman MS, et al. Impact of obesity and smoking on psoriasis presentation and management. *Arch Dermatol*. 2005;141(12):1527-1534.
- 13. Czarnecka A, Zabłotna M, Purzycka-Bohdan D, Nowicki RJ, Szczerkowska-Dobosz A. An observational study of 147 psoriasis patients: Overweightness and obesity as a significant clinical factors correlated with psoriasis. *Medicina (Kaunas)*. 2023;59(11):2006.
- 14. Pirro F, Caldarola G, Chiricozzi A, et al. Impact of body mass index on the efficacy of biological therapies in patients with psoriasis: A real-world study. *Clin Drug Investig*. 2021;41(10):917-925.
- 15. Jensen P, Zachariae C, Christensen R, et al. Effect of weight loss on the severity of psoriasis: A randomized clinical study. *JAMA Dermatol*. 2013;149(7):795-801.

References

- 16. Scher JU, Ogdie A, Merola JF, Ritchlin C. Preventing psoriatic arthritis: Focusing on patients with psoriasis at increased risk of transition. *Nat Rev Rheumatol.* 2019;15(3):153-166.
- 17. Elmets CA, Leonardi CL, Davis DMR, et al. Joint AAD-NPF guidelines of care for the management and treatment of psoriasis with awareness and attention to comorbidities. *J Am Acad Dermatol*. 2019;80(4):1073-1113.
- 18. Coumbe AG, Pritzker MR, Duprez DA. Cardiovascular risk and psoriasis: Beyond the traditional risk factors. *Am J Med.* 2014;127(1):12-18.
- 19. Hu SC, Lan CE. Psoriasis and cardiovascular comorbidities: Focusing on severe vascular events, cardiovascular risk factors and implications for treatment. *Int J Mol Sci.* 2017;18(10):2211.
- 20. Garshick MS, Ward NL, Krueger JG, Berger JS. Cardiovascular risk in patients with psoriasis: JACC Review Topic of the Week. *J Am Coll Cardiol*. 2021;77(13):1670-1680.
- 21. Elnabawi YA, Oikonomou EK, Dey AK, et al. Association of biologic therapy with coronary inflammation in patients with psoriasis as assessed by perivascular fat attenuation index. *JAMA Cardiol*. 2019;4(9):885-891.
- 22. Wilson FC, Icen M, Crowson CS, et al. Incidence and clinical predictors of psoriatic arthritis in patients with psoriasis: A population-based study. *Arthritis Rheum.* 2009;61(2):233-239.
- 23. Haroon M, Gallagher P, Fitzgerald O. Diagnostic delay of more than 6 months contributes to poor radiographic and functional outcome in psoriatic arthritis. *Ann Rheum Dis.* 2015;74(6):1045-1050.
- 24. Cohen JM, Husni ME, Qureshi AA, Merola JF. Psoriatic arthritis: It's as easy as "PSA". *J Am Acad Dermatol.* 2015;72(5):905-906.
- 25. Prussick RB, Miele L. Nonalcoholic fatty liver disease in patients with psoriasis: A consequence of systemic inflammatory burden? *Br J Dermatol.* 2018;179(1):16-29.
- 26. Balak DMW, Piaserico S, Kasujee I. Non-alcoholic fatty liver disease (NAFLD) in patients with psoriasis: A review of the hepatic effects of systemic therapies. *Psoriasis* (Auckl). 2021;11:151-168.
- 27. Ruan Z, Lu T, Chen Y, Yuan M, et al. Association between psoriasis and nonalcoholic fatty liver disease among outpatient US adults. *JAMA Dermatol.* 2022;158(7):745-753.
- 28. Roberts KK, Cochet AE, Lamb PB, et al. The prevalence of NAFLD and NASH among patients with psoriasis in a tertiary care dermatology and rheumatology clinic. *Aliment Pharmacol Ther*. 2015;41(3):293-300.
- 29. Oda K, Uto H, Mawatari S, Ido A. Clinical features of hepatocellular carcinoma associated with nonalcoholic fatty liver disease: A review of human studies. *Clin J Gastroenterol*. 2015;8(1):1-9.
- 30. Ogdie A, Grewal SK, Noe MH, et al. Risk of incident liver disease in patients with psoriasis, psoriatic arthritis, and rheumatoid arthritis: A population-based study. *J Invest Dermatol.* 2018;138(4):760-767.

Explore and Engage with our **Dermatology Resources**